Supplementary Text, Tables, and Figures #### 1. Sequence design • Y-shaped DNA nanostructures (Y-motifs) In the following tables, sticky ends (SEs) are marked by bold fonts. Sequences marked in the same color form a double-stranded stem. ### Supplementary Table 1 Y-motif without azobenzene (Y) | Name | Sequence (5′–3′) | |------|--| | Y-1 | GCTCGAGCCAGTGAGGACGGAAGTTTGTCGTAGCATCGCACC | | Y-2 | GCTCGAGCCAACCACGCCTGTCCATTACTTCCGTCCTCACTG | | Y-3 | GCTCGAGCGGTGCGATGCTACGACTTTGGACAGGCGTGGTTG | Sequences were referenced from Y. Sato et al. (2020). ### Supplementary Table 2 Y-motif with azobenzene (Y_{1x7}) | Na | me | Sequence (5'-3') | |------------------|-----|------------------| | Y ₁ , | 7-1 | GxCTCGAGC | | Y ₁ , | 7-2 | GxCTCGAGC | | Y ₁ , | 7-3 | GxCTCGAGC | Azobenzene ('x') was inserted in the SEs of Y. Stem sequences (...) were the same as the counterparts of Y. #### **Supplementary Table 3** Y-motif with azobenzene (Y_{3x5}) | Name | Sequence (5'-3') | |---|------------------| | Y _{3x5} -1 | GCTxCGAGC | | Y _{3x5} -2 | GCTxCGAGC | | Y _{3x5} -3 | GCTxCGAGC | | Supplementary Table 4 Y-motif with azobenzene (Y _{2x1x5}) Name Sequence (5'-3') | | | Y _{2x1x5} -1 | GCxTxCGAGC | | Y _{2x1x5} -2 | GCxTxCGAGC | | $Y_{2x1x5}-3$ | GCxTxCGAGC | Y'_{2x1x5}-2 Y'_{2x1x5}-3 (The same as Y'-2) (The same as Y'-3) | Supplementary Table 5 Y-motif with azobenzene (Y _{2x4}) | | | |--|---|--| | Name | Sequence (5′–3′) | | | Y _{2x4} -1 | GCxTAGC | | | Y _{2x4} -2 | GCxTAGC | | | Y _{2x4} -3 | GCxTAGC | | | | Supplementary Table 6 Y-motif with a single SE (Control) | | | Name | Sequence (5'–3') | | | Y'-1 | (The same as Y-1) | | | Y'-2 | CAACCACGCCTGTCCATTACTTCCGTCCTCACTG | | | Y'-3 | GGTGCGATGCTACGACTTTGGACAGGCGTGGTTG | | | Supplementary Table 7 Azobenzene-tethered Y-motif with a single SE (SE _{1x7}) | | | | Name | Sequence (5′–3′) | | | Y' _{1x7} -1 | (The same as Y _{1x7} -1) | | | Y' _{1x7} -2 | (The same as Y'-2) | | | Y' _{1x7} -3 | (The same as Y'-3) | | | Supplementary Table 8 Azobenzene-tethered Y-motif with a single SE (SE _{3x5}) | | | | Name | Sequence (5'–3') | | | Y' _{3x5} -1 | (The same as Y _{3x5} -1) | | | Y' _{3x5} -2 | (The same as Y'-2) | | | Y' _{3x5} -3 | (The same as Y'-3) | | | Sup | pplementary Table 9 Azobenzene-tethered Y-motif with a single SE (SE _{2x1x5}) | | | Name | Sequence (5'–3') | | | Y' _{2x1x5} -1 | (The same as Y _{2x1x5} -1) | | • Cross-linked DNA motifs for sequence-specific photo-responsiveness **Supplementary Table 10** Cross-linked DNA systems $(Y_i/L_0/Y_0, i = 1x7, 3x5, 2x1x5)$ | Name | Sequence (5'-3') | |----------------------------|--| | Y _i -1 | (The same as Y_{i} -1, i = 1x7, 3x5, 2x1x5) | | Y _i -2 | (The same as Y_{i} -2, i = 1x7, 3x5, 2x1x5) | | Y _i -2_FAM | [FAM]-CAACCACGCCTGTCCATTACTTCCGTCCTCACTG | | Y _i -3 | (The same as Y_i -3, $i = 1x7$, $3x5$, $2x1x5$) | | Y ₀ -1 | CTCGCGAGAAAGGAACTCTCCGCGTTGACAAAGCCGACACGT | | Y ₀ -2 | CTCGCGAGGCCTCTGTGTCGCATCTTCGCGGAGAGTTCCTTT | | Y ₀ -2_Alexa405 | [Alexa405]-GCCTCTGTGTCGCATCTTCGCGGAGAGTTCCTTT | | Y ₀ -2_Cy3 | [Cy3]-GCCTCTGTGTCGCATCTTCGCGGAGAGTTCCTTT | | Y ₀ -3 | CTCGCGAGACGTGTCGGCTTTGTCTTGATGCGACACAGAGGC | | L ₀ -1 | CTCGCGAGGCTGGACTAACGGAACGGTTAGTCAGGTATGCCAGCAC | | L ₀ -2 | CTCGCGAGCTCAGAGAGGTGACAGCATTCCGTTCCGTTAGTCCAGC | | L ₀ -3 | CTCGCGAGCCATGGTCCCAAGTGATGTTTGCTGTCACCTCTCTGAG | | L ₀ -4 | GCTCGAGCCGGCGCTGTAAATTTGCGTTCATCACTTGGGACCATGG | | L ₀ -5 | GCTCGAGCCAGACGTCACTTCCCAACTTCGCAAATTTACAGCGCCG | | L ₀ -6 | GCTCGAGCGTGCCTGACTTTGTTGGAGAGTGACGTCTG | • Plain Y motifs with redesigned SEs #### Supplementary Table 11 rY_A | Name | Sequence (5'-3') | |--------------------|------------------| | rY _A -1 | ATTATAAT | | rY _A -2 | ATTATAAT | | rY _A -3 | ATTATAAT | The stem sequences (...) were the same as the counterparts of Y. ## Supplementary Table 12 rY_B | Name | Sequence (5'–3') | |--------------------|------------------| | rY _B -1 | TTCGAA | | rY _B -2 | TTCGAA | | rY _B -3 | TTCGAA | | | | The stem sequences (...) were the same as the counterparts of Y. ## Supplementary Table 13 ${ m rY}_{ m C}$ | Name | Sequence (5'-3') | | |--------------------|------------------|---| | rY _C -1 | GATATATC | | | rY _C -2 | GATATATC | | | rY _C -3 | GATATATC | | | | | | | | | Supplementary Table 14 rY _D | | Name | Sequence (5'-3') | | | rY _D -1 | ACTTAAGT | | | rY _D -2 | ACTTAAGT | | | rY _D -3 | ACTTAAGT | | | | | | | | | Supplementary Table 15 rY_E | | Name | Sequence (5'-3') | | | rY _E -1 | GATCGATC | | | rY _E -2 | GATCGATC | | | rY _E -3 | GATCGATC | | | | | | | | | Supplementary Table 16 rY_F | | Name | Sequence (5'-3') | | | rY _F -1 | GACTCGAGTC | | | rY _F -2 | GACTCGAGTC | | | rY _F -3 | GACTCGAGTC | | Sequences were referenced from Y. Sato et al. (2020). # Supplementary Table 17 $rY_{\rm G}$ | Name | Sequence (5'-3') | |------------------------|------------------| |
rY _G -1 | GCTAGCGCTAGC | | rY_G-2 | GCTAGCGCTAGC | | rY _G -3 | GCTAGCGCTAGC | Sequences were referenced from Y. Sato et al. (2020). | Name | Sequence (5′–3′) | |--|--| | Y _{2x4} -1,2,3 | (See above) | | Y _{2x4} -2_FAM | (The same as Y_i -2_FAM, $i = 1x7, 3x5, 2x1x5$) | | Y ₀ -1,2,3; Y ₀ -2_Cy3 | (See above) | | L' ₀ -1,2,3 | (The same as L_0 -1,-2,-3, respectively) | | L' ₀ -4 | GCTAGC | | Ľ ₀ -5 | GCTAGC | | L' ₀ -6 | GCTAGC | The stem sequences (...) were the same as the counterparts of L_0 .