Information
Accession GMS-97-1 

URL copied to the clipboard

TitlePHi-C2: interpreting Hi-C data as the dynamic 3D genome state
Submit date2025-05-13 14:43:43
Last update date2025-05-13 15:12:15
Contact Soya SHINKAI
soya.shinkai AT riken.jp
RIKEN BDR
Sharing
Total file size2.82 MB
Keywords PHi-C2 Genome DNA Mesoscale Rheology Modeling 
Viscoelasticity 
 Study
Experiment type PHi-C2
Rheology analysis
Summary High-throughput chromosome conformation capture (Hi-C) is a widely used assay for studying the three-dimensional (3D) genome organization across the whole genome. Here, we present PHi-C2, a Python package supported by mathematical and biophysical polymer modeling that converts input Hi-C matrix data into the polymer model’s dynamics, structural conformations and rheological features. The updated optimization algorithm for regenerating a highly similar Hi-C matrix provides a fast and accurate optimal solution compared to the previous version by eliminating the factors underlying the inefficiency of the optimization algorithm in the iterative optimization process. In addition, we have enabled a Google Colab workflow to run the algorithm, wherein users can easily change the parameters and check the results in the notebook. Overall, PHi-C2 represents a valuable tool for mining the dynamic 3D genome state embedded in Hi-C data.
Citation(s) Shinkai, S., Itoga, H., Kyoda, K., Onami, S. (2022) PHi-C2: interpreting Hi-C data as the dynamic 3D genome state. Bioinformatics, 38(21), 4984–4986.
https://doi.org/10.1093/bioinformatics/btac613
 Experiment
OrganismMouse
Cell (Tissue) embryonic stem cell
Protocol
Data processing
 Analysis
[978] Rheology analysis



figureS5.pdf (2.11 MB)  
[979] Rheology analysis
figureS5.png (717.12 KB)  
 Supplements [download all]
[978] figureS5.pdf
 Rheology analysis
 application/pdf 2.11 MB MD5: 970742562ac1a812ffbb47e3f3234c0e
[979] figureS5.png
 Rheology analysis
 image/png 717.12 KB MD5: 16bf47a272a5aa4cce8bfe2b76e98077